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A b s t r a c t

The etiology of atherosclerosis is still unknown, but there are several hypotheses trying to explain this complex disease. Most 
consider atherosclerosis as a cholesterol storage disease. However, hypercholesterolemia is not a cause but a risk factor. Besides, 
like other well-known systemic risk factors, it does not explain the uneven distribution of atheromatous plaques in the vasculature. 
Atherosclerotic lesions develop mainly at vulnerable “risk points” of the arterial wall such as curvatures and near side branches, 
and predominantly in the left anterior descending (LAD), while the left circumflex (LCx) artery is relatively spared. Furthermore, ath-
eromatous plaques are present mainly in the proximal segments in the LAD and LCx, in contrast to the right coronary artery (RCA), 
where plaques are more evenly distributed. The hemodynamic theory explains to some extent the distribution of atherosclerotic 
lesions and considers atherosclerosis as a reactive biological response of endothelial cells to wall shear stress. In this review, we 
discuss the interplay of concentration of low-density lipoproteins at the luminal surface and local hemodynamic forces (disturbed 
flow) that reduce wall shear stress in the process of plaque formation. Moreover, we present the distribution of atheromatous 
plaques in the coronary arteries in autopsy studies and imaging methods such as cardiac computed tomography angiography and 
invasive coronary angiography. 
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Introduction
The lipid hypothesis of atherogenesis regards athero-

sclerosis as a lipid storage disease that begins with sub-
endothelial build-up of low-density lipoprotein cholester-
ol (LDL-C) [1]. Nevertheless, this is only a hypothesis, and 
the etiology of atherosclerosis has evolved over a span 
of time. To date, etiological research has identified nu-
merous risk factors for atherosclerosis, and many believe 
that high cholesterol is one of the most important. 

Literally, a causative factor cannot be a risk factor at 
the same time. This means no more and no less that hy-
percholesterolemia cannot be the cause, simply because 
it is already a well-known risk factor for atherosclero-
sis with a minor impact. In support of this assertion, 
for instance, no or a very weak association was found 
between LDL-C concentration and coronary calcifica-
tion and the severity of coronary artery disease (CAD) 
imaging by cardiac computed tomography angiography 
(CCTA) [2–4]. In addition, LDL-C does not correlate with 
the degree of coronary atherosclerosis in invasive angi-

ography and with peripheral atherosclerosis [5, 6]. There 
is even the concept of the cholesterol paradox [7]. For 
example, the analysis of serum lipids among 7,744 pa-
tients undergoing coronary artery calcium (CAC) or CCTA 
scanning revealed that LDL-C was inversely related to 
all-cause mortality [8]. 

Nevertheless, the lipid hypothesis of atherogenesis 
does not explain why hypercholesterolemia spares some 
arteries, such as the interior mammary arteries, while 
other sites within the vasculature commonly harbor le-
sions [9] (Figure 1). Therefore, the orthodox connotation 
of alterations in lipid metabolism with atherosclerosis 
requires verification.

In this review, we focus on the atherosclerotic lesion 
topography in the coronary arteries in autopsy studies 
and imaging modalities. In addition, alternative explana-
tions for the non-random distribution of lesions based 
on hemodynamic disturbances and their effect on the 
vessel wall are discussed [10–13]. 
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Natural history of atherosclerosis and 
normal atheromatous plaque distribution 
in coronary arteries – autopsy studies

Atherosclerosis is a  slow, progressive disease that 
may begin with the appearance of fatty streaks in the 
aorta [14]. Progression to fibrous plaques and more ad-
vanced lesions leads to symptomatic atherosclerosis 
[15]. Particularly susceptible sites are the aorta with its 
major branches, including lower extremity branches. An 
autopsy study of the coronary, carotid and superficial 
femoral arteries revealed that the initiation, speed of de-
velopment, and phenotypic expression of atherosclerotic 
plaques are related to the anatomic localization of the 
arteries [16]. In addition, atherosclerotic lesions are not 
only site-specific, but occur predominantly on the outer 
walls of the bifurcation and on the inner curvatures [17]. 

The timing of atherosclerosis onset differs between 
individuals, but it has been proven that atherosclero-
sis begins in childhood as the deposition of cholesterol 
and its esters in the intima of large muscular arteries. 
The prevalence and extent of fatty streaks and fibrous 
plaques increase with age [18]. Moreover, it has been 
shown that the location and extent of coronary artery 
fatty streaks in young people correspond to the location 
and extent of raised lesions in the elderly [19, 20]. 

Several studies have shown that fatty streaks ap-
pear in the coronary arteries in the second decade of 
life [21]. However, Stary found that microscopic coun-
terparts of fatty streaks are present in the left anterior  
descending (LAD) coronary artery in more than half of 
children 10–14 years of age [22]. The PDAY (Pathobiolog-
ical Determinants of Atherosclerosis in Youth) research 
group revealed that approximately 1 in 20 men aged 25 

to 29 years and 1 in 5 men aged 30 to 34 years had an 
advanced atherosclerotic lesion that caused stenosis of 
40% or more in the proximal LAD artery from histological 
sections of LAD arteries from 760 victims of accidents, 
homicides, and suicides [23].

The particular LAD predisposition to plaque forma-
tion is confirmed by the comparison of post mortem 
computed tomography CAC study results with histolog-
ically observed calcification and the degree of luminal 
stenosis [24]. In addition, in the LAD and the left circum-
flex (LCx) artery lesions tend to gather in the proximal 
section, while in the right coronary artery (RCA) lesions 
have a more non-uniform distribution [25]. One study in-
volving 102 hearts with CAD at autopsy demonstrated 
that proximal CAD was more common than distal CAD 
in both diabetic and nondiabetic patients [26]. Moreover, 
the most affected by spontaneous coronary dissection is 
the LAD, and vulnerable plaques leading to ST elevation 
myocardial infarction are found within the proximal third 
of the coronary arteries [27, 28]. 

The distribution of atherosclerotic plaques 
in CCTA

Calcification is the major feature of coronary athero-
sclerosis and occurs very early. However, it can only be 
detected when an increased amount is present, using 
either electron beam computed tomography or multide-
tector computed tomography. A  positive calcium score 
emerges after the age of 40 in men and women [29]. 
Numerous CCTA studies have consistently reported the 
LAD susceptibility to atherosclerosis, less frequently the 
RCA, followed by the LCx and LM [30–35]. Similarly to 
post mortem examinations, CCTA studies also showed 

Figure 1. On the left side, angio view of the right and left coronary arteries. Despite advanced atheromatous 
lesions in the coronary arteries, both internal mammary arteries are free of atherosclerosis. On the right side, 
a schematic diagram of the velocity profile in the lumen of a curved coronary artery. Atheromatous lesions were 
more common on the myocardial side than on the opposite epicardial side of the arteries

Velocity  
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that proximal sections are atherosclerotic in the LAD and 
LCx, while the location of atherosclerotic plaques was 
more uniform in the RCA. Of the 30,154 participants in 
the SCAPIS (Swedish Cardiopulmonary Bioimage Study) 
cohort, in the early phase of atherosclerosis, defined as 
disease of only one coronary segment, the proximal LAD 
was most commonly involved [30]. In both patients with 
diabetes and renal diseases, the LAD was the most fre-
quently involved vessel and the LM was the least affected 
[36, 37]. Using the CCTA methodology Bax et al. focusing 
on the extent and composition of atherosclerotic plaques 
among patients with varying risk of atherosclerotic CAD 
found that the atheromatous plaques in the LCx were 
decidedly less numerous and consisted of fewer non-cal-
cified plaques, supporting prior evidence of a lower inci-
dence of acute coronary events in this vessel [38]. 

A  large prospective study evaluated 1,344 patients 
from an international registry after undergoing sequen-
tial CT scans with a mean interval of 3.3 years [32]. This 
study showed that plaque progression and the odds of 
an annual increase in plaque burden were less common 
with the LCx compared to the LAD and RCA. Researchers 
suggested that this is due to different stages of the dis-
ease process or different pathogenic milieu in the coro-
nary arteries.

The EISNER (Early-Identification of Subclinical Athero-
sclerosis by Noninvasive Imaging Research) registry, fo-
cusing on patients with mild CAC, defined as a CAC score 
of 1-99, revealed that proximal CAC was associated with 
an increased incidence of major adverse cardiovascular 
events (MACE) [39]. Also, patients with proximal coro-

nary involvement but without obstructive CAD had an 
increased risk of MACE in the multicenter CONFIRM (Cor-
onary CT Angiography Evaluation for Clinical Outcomes: 
An International Multicenter) registry [40].

The distribution of atherosclerotic plaques 
in invasive coronary angiography 

Based on the data from the National Registry of Pro-
cedures of Invasive Cardiology study of 3,208 young (be-
low 40 years of age) patients in 2014 and 2017, it was 
found that the most common infarct-related artery was 
the LAD [41]. 

Three-vessel intravascular ultrasound (IVUS) imaging 
in 392 patients found that plaque ruptures occurred pre-
dominantly in the proximal section of the LAD, proximal 
and distal sections of the RCA, and throughout the LCx 
[42]. Another IVUS analysis showed a  gradient of LAD 
plaque involvement from proximal to distal with sparse 
disease in the distal LAD. In contrast to the LAD, the 
proximal-to-distal plaque gradient in the RCA was less 
distinct [43]. Halon et al. studied the detailed distribu-
tion of coronary lesions in 302 patients with CAD who 
underwent coronary angiography for chest pain. In the 
LAD, atherosclerotic lesions were most common around 
the first diagonal branch [44]. In the LCx, the lesions were 
clustered around the origin of the first marginal branch. 
In the RCA, there was a  predilection for narrowing be-
tween the infundibular and acute marginal branches 
and specifically around the origin of the right ventricular 
branch [44]. According to the Cardiovascular Medicine 

Figure 2. Curved MPR images of the left coronary artery bifurcation (A) and trifurcation (B). Calcified plaques 
are located on the lateral wall of the left anterior descending artery (A) and on the border of the lateral walls 
of the left main and left anterior descending artery (B). The anatomic features of the coronary division govern 
a complex local hemodynamic microenvironment (separation, recirculation, and secondary flow), leading to 
a local low and oscillatory wall shear stress, here located along the lateral walls of the vessel divisions. A sche-
matic diagram of shear stress distribution in the left coronary artery trifurcation based on the principles of 
hemodynamics (C)
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Database of Saitama Sekishinkai Hospital, of 3,268 pa-
tients with chronic kidney disease who underwent per-
cutaneous coronary intervention, coronary lesions were 
observed in LAD in 56% of patients, compared to 28% 
and 22% in the RCA and LCx, respectively [45].

Is there a reason for the non-random 
distribution of atherosclerosis in the 
coronary arteries? What is the local risk 
factor?

As mentioned above, although the entire vascular bed 
is constantly exposed to systemic risk factors, including hy-
percholesterolemia, the formation of atherosclerotic lesions 
in the coronary arteries is not uniform. This claim is con-
firmed by the following observations. First, plaques develop 
predominantly in the LAD, while the LCx artery is relatively 
spared. Second, the plaques in the LAD and LCx are pres-
ent mainly in the proximal segments, while in the RCA the 
plaques are more evenly distributed. Third, the variation in 
the occurrence of lesions is almost always eccentric and 
develops predominantly at lesion-prone “risk points” of the 
arterial vasculature, such as the lateral wall of the coronary 
branching, particularly when the angle between the daugh-
ter branches is wide [46], or in the proximity to side branch-
es such as septal and diagonal branches (Figure 2).

Therefore, there must be a reason for this striking fea-
ture of the topography. Several theories have been pro-

posed to explain the specific location of atherosclerotic 
plaques, including the discontinuation of the internal 
elastic lamina or perivascular adipose tissue dysfunction 
[47]. However, recent evidence supports the hypothesis 
that the distribution of plaque results from the interac-
tion of local hemodynamic forces (disturbed flow) within 
the vessel wall [48, 49]. Hemodynamic theory consid-
ers atherosclerosis to be a  reactive biological response 
of endothelial cells (ECs) to the imposition of frictional 
mechanical drag of blood flow on the artery wall, called 
wall shear stress (WSS) [50]. ECs exposed to a disturbed 
flow with low WSS at the “risk points” undergo reorga-
nization. Shear-induced alterations in ECs’ integrity and 
increased vascular permeability, with up-regulation of 
adhesion molecules, promote monocyte adhesion and 
migration into the subendothelial space. Further, elevat-
ed luminal LDL-C concentrations at low WSS locations 
contribute to LDL-C transport across the arterial intima 
[51–54]. Thus, both a low WSS and dyslipidemia promote 
an inflammatory response and plaque initiation and de-
velopment. 

As can be easily noted in the CCTA imaging tech-
nique, plaques develop along the inner curvature, where 
the blood flow is slower than along the outer wall. It is 
due to the non-axial blood flow inside the cross-section 
on the curved segments (the flow velocity in curved ar-
teries is skewed to the outer wall, creating lower WSS on 
the inner curvature, where the chance of leukocytes’ and 

Figure 3. Curved MPR images of left anterior descending artery – LAD (A, B), cinematic rendering of LAD (C), 
curved MPR image of cross-sections through the plaque (D), inverted image (E), color scale (F). An eccentric, 
partly calcified plaque is located next to the first septal branch – the milking-like effect of the septal perfora-
tor [70]. Positive arterial wall remodeling and preserved arterial lumen diameter during early atherosclerosis 
(Glagov’s remodeling) [56]
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monocytes’ adhesion and LDL migration to the intima is 
greater) (Figure 3). Thus, the plaques grow circumferen-
tially from the inner toward the outer curvature of the 
artery arch [55–57]. Therefore, local flow disturbances 
dictate an eccentric plaque nature [58]. 

In vitro and in vivo experiments showed that ECs are 
critical sensors of shear stress that modulate endothelial 
structure, function, and permeability [59]. Low or low and 
oscillatory WSS triggers multiple pathways of intracellu-
lar signaling pathways that promote the expression of 
pro-proliferative and pro-inflammatory mechanosensi-
tive genes while suppressing atheroprotective flow-de-
pendent genes [60]. As a  result, a  flow-dependent in-
flammatory and infiltrative process is initiated with 
important implications for hemostasis and thrombosis, 
vascular tone, redox balance, vascular smooth cell prolif-
eration and ultimately their osteoblastic transformation 
with subsequent plaque calcification [47]. This phenom-
enon of interplay of shear stress and ECs is called mech-
anotransduction and is a key mechanism linking blood 
flow to atherosclerosis [61–63]. Some authors postulate 
that local alterations in WSS may promote the trans-
formation of stable plaque subtypes into unstable ones 
[64], and that a local low WSS provides incremental risk 
stratification of untreated coronary lesions in high-risk 
patients beyond the measures of plaque burden, low 
minimal lumen area and morphology [65].

These computational fluid dynamics technologies, 
which enable the quantification of hemodynamic forces 
acting on plaques in patient-specific geometric condi-
tions, may improve the identification of culprit lesions 
for future acute coronary syndrome [66].

One of the vital questions regarding atherosclerosis 
is whether the internal mammary artery and the radial 
artery in their normal anatomical position are resistant 
to atherosclerosis. Another is why the internal mamma-
ry artery is more durable when used as a coronary graft, 
whilst the radial artery used as an aortocoronary graft is 
no longer protected. A thought-provoking explanation for 
the second question may be that the internal mammary 
artery used as a by-pass encounters flow conditions in its 
native environment, while the radial artery is anastomo-
sed to the aorta [67]. Therefore, it is not without reason 
that atherosclerosis is regarded as a type of flow-depen-
dent disease, mainly of the aorta and its branches. The 
key factor for such atherosclerosis distribution may be the 
behavior of pressure and flow pulses in the arteries as 
they travel away from the heart toward the periphery [68].

Conclusions
Mechanical forces associated with complex blood 

flow play an important role in atherosclerosis. Disturbed 
laminar flow or turbulent flow reduces WSS, which in 
turn causes modification of ECs’ functions and struc-
tures with a  subsequent flow-dependent ongoing in-

flammatory response. Increased vascular permeability 
and flow-dependent high luminal surface LDL-C concen-
tration facilitate the LDL-C uptake in regions with low 
WSS [54, 69]. Shear-dependent upregulation of cellular 
adhesion molecules’ expression promotes the trapping 
of monocytes in the subendothelial space, maintaining 
the inflammatory response. Therefore, hypercholesterol-
emia and low WSS play in one orchestra, and long-term 
exposure of ECs to reduced WSS promotes the buildup of 
atheromatous plaques.

In line with the above comments, the propensity to 
form plaques in the coronary arteries should be related 
to the geometry of the vascular architecture. The favored 
proximal LAD plaques’ location should be attributed to 
the presence of side septal perforators and diagonal 
branches, which have a  significant impact on the local 
flow field distribution and alter the local hemodynamic 
milieu [70]. The dispersion of atherosclerotic plaques in 
the LCx and RCA should also be ascribed to their branch-
ing pattern.
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